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We introduce an involution map for the functional monad which generalizes the transversa-
lity map for the inclusion hyperspace monad and the conjugation map for the capacity monad.
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OrpeiesieHO OTOOparKeHNe WHBOJIONWH JIIsi MOHAJ bl (DYHKIIMOHAJIOB, KOTOpoe 0000IaeT
0TOOparKeHHe TPAHCBEPCAJIH JJIsi MOHAJIBI THIIEPIIPOCTPAHCTB BKIIIOYEHUST U OTOOParKeHHe KOHb-
oraluy J1Jisi MOHa bl EMKOCTEN.

1. We call a map 7: X — X an involution iff i o ¢ = idx. Involution maps play an
important role in investigations of some monads in the category Comp. The transversali-
ty map LX: GX — GX for the space of hyperspaces of inclusion GX is an involution (see
p. 30 of [1]). Moreover, the map L X is an antiisomorphism of the lattice GX with lattice
operations intersection and union. The maps 1 X are components of a natural transformation
1: G — G which is an isomorphism of the monad G based on the functor G.

The conjugation map kX : M X — MX for the space of capacities has similar properties
(see [2]).

The monads G and M (based on the capacity functor M) could be represented as
submonads of the functional monad V (see [3] and [4]). The aim of this paper is to defi-
ne an involution map for the functional monad, respective restrictions of which coincide
with the transversality map and the conjugation map.

The paper is arranged in the following manner. In Section 2 we give necessary definitions
and facts, in Section 3 we define an involution map and investigate its properties and in
Section 4 we consider how this map acts on some submonads of the monad V.

2. By Comp we denote the category of compact Hausdorff spaces (compacta) and continuous
maps. For each compactum X we denote by C(X) the Banach space of all continuous
functions ¢: X — R with the usual sup-norm: ||| = sup{|¢(x)| | € X}. We also consider
on C(X) the natural partial order.

In what follows, all spaces and maps are assumed to be in Comp except for R, the spaces
C(X) and functionals defined on C'(X) with X compact Hausdorff.

We recall some categorical definitions. We define them only for the category Comp. The
central notion is the notion of monad (or triple) in the sense of S. Eilenberg and J. Moore.
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A monad ([5]) T = (T, n, 1) in the category Comp consists of an endofunctor 7': Comp —
Comp and natural transformations n: Idey,, — T (unity), p: 7% — T (multiplication)
satisfying the relations poTn = ponT =1y and po pT = poTp. (By Ideom, we denote the
identity functor on the category Comp and T? is the superposition 7' o T'.)

A natural transformation ¢»: T — T is called a morphism from a monad T = (T, 7, ) to
amonad T = (T", 0/, i) if Yon=n"and Ypopu = p onT’ oTe. If all of the components of )
are monomorphisms then the monad T is called a submonad of T" and v is called a monad
embedding. If 1 has the inverse monad morphism, then 1 is called a monad isomorphism.

By VX we denote the product [] peCX [min ¢, max @], which is in fact the space of all
functionals v: C'(X) — R (not necessarily linear) with the property v(yp) € [min ¢, max ¢|
for each ¢ € C(X). For a map ¢ € C(X) we denote by 7, or 7(yp) the corresponding
projection m,: VX — R. Now, for each map f: X — Y we define amap Vf: VX = VY
by the formula 7, o V f = 7o for ¢ € C(Y). For a compactum X we define components
hX: X — VX and mX: VX — VX by 7, 0 hX = ¢ and 1, o mX = w(m,) for all
¢ € C(X)). The triple V = (V, h,m) is a monad in the category Comp (|6]).

A functional v: CX — R is called weakly additive if for each ¢ € R and ¢ € C'X we have
v(p +cx) = v(p) + ¢; normed if v(1x) = 1; order-preserving if for each ¢, ¢p € CX with
© < ¢ we have v(p) < v(¢). For a compactum X by OX we will denote the set of all order-
preserving weakly additive normed functionals. The construction O defines an important
submonad O of V (see [7] for more details).

3. Let us define a map ZX: VX — VX by the formula m, 0o ZX = —7_,. It is easy to see
that ZX is a well defined and a continuous involution.

Proposition 1. The maps ZX are components of a monad isomorphism Z: V — V.

Proof. Let f: X — Y be a map and ¢ € C(X). Then we have
TeolXoVf=—-m_,oVf=—-T_rof=7prolX =m,0VfolX.

Hence the maps ZX are components of a natural transformation Z: V" — V.
Let us show that Z is a monad morphism. Consider any compactum X and ¢ € C(X).
Then we have

T,0ZX ohX = —m_,0hX = —(—p) =p=m,0hX,
m,0ZX omX = —nm_,omX = —w(n_y,) = —7(—7,0IX) = —7(—m,) o VIX =
=7(my) 0ZVX o VIX =m,omX oZVX o VIX.

We obtain Zoh =h and Zom =moZV o VZ, hence Z is a monad morphism. Since ZX is
an involution, Z is a monad isomorphism. O

There exist natural lattice operations V and A on V X defined by the formulas

To(v V ) = max{m,(v), my ()}, mp(v A p) = min{my(v), 7, (1) }

for v, p € VX and ¢ € C(X). The following proposition shows that ZX is an antiisomorphi-
sm of the lattice VX

Proposition 2. ZX(v A p) =ZX(v) VIX () and ZX (v V pu) =IX(v) NITX ().
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Proof. Consider any ¢ € C(X). We have

To(ZX(WAp)=—m (v Ap)=—min{r_,(v), 7 (1)} =
— {7 (0), ~ 7o)} = max{m, 0 TX(v), mp 0 TX (1)} = mp(TX (1) V IX ().

The proof of the second equality is similar. O]

Let us denote
VPX ={reVX| w,w(y) = —W¢(V>}.

The next proposition follows immediately from the definition of ZX.
Proposition 3. We have ZX (v) = v iff v € VPX.

4. Let us consider how a involution acts on some submonads of V. We need definitions of
the monads G and M.

For a compactum X by exp X we denote the hyperspace of X (the set of non-void compact
subsets of X provided with the Vietoris topology). An element A € exp® X is called an
inclusion hyperspace if for each A € A and B € exp X with A C B we have B € A. Let us
denote by GX = {A € exp? X | A is inclusion hyperspace} C exp? X. For amap f: X - Y
we define a map Gf: GX — GY by the formula Gf(A) = {A €expY | f(B) C A for some
B € A}, A € GX. Then we define natural transformations 7: Icom, — G and pu: G* = G
as follows: nX (z) = {A € expX |z € A}, z € X and puX(A) = U{Na | « € A}, where
A € G*>X . 1t is shown in [8] that the triple G = (G, 7, 1) is a monad on the category Comp.

The transversality map LX: GX — GX is defined by the formula LX(A) = {B €
expX | BN A # @ for each A € A}. The map 1 X is an antiisomorphism of the lattice GX
and the natural transformation 1: G — G is a monad isomorphism ([1]).

A monad embedding [: G — V could be defined as follows 7, o [X (A) = sup{inf p(A) |
Ae A}, Ae GX and v € CX ([3]).

Finally, consider the definition of a capacity monad. We follow the terminology of [2].
Let X be a compactum. A function ¢ that sends each closed subset A of X to a real number
c(A) € [0,1] is called an upper-semicontinuous capacity on X if the following three properties
hold for each closed subsets F' and G of X:

1. ¢(X)=1,c(@) =0,
2. if FF C G, then ¢(F) < ¢(G),

3. if ¢(F') < a, then there exists an open set O C F such that ¢(B) < a for each compactum
B cCO.

We extend a capacity ¢ to all open subsets U C X by the formula ¢(U) = sup{c(K) | K
is a closed subset of X such that K C U}.

The space M X of all upper-semicontinuous capacities on a compactum X is a compactum
as well, if a topology on M X is defined by a subbase that consists of all sets of the form
O_(F,a) = {¢c € MX | ¢(F) < a}, where F is a closed subset of X, a € [0,1], and
O+ (Uya) = {ce€ MX | ¢(U) > a}, where U is an open subset of X, a € [0,1]. Since all
capacities we consider here are upper-semicontinuous, from now on we call elements of M X
simply capacities.

Let us define the map M f: M X — MY for a continuous map of compacta f: X — Y
by the formula M f(c)(F) = ¢(f~'(F)) where ¢ € MX and F is a closed subset of X. We
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obtain the functor M which is a functorial part of the monad M = (M, n, 1) (|2]), where the
components of the natural transformations are defined as follows: nX (z)(F) =1if z € F
and nX (z)(F)=0if x ¢ F,

pX(C)(F) = sup{t € [0,1] | C({c € MX [ ¢(F) > t}) > t},

where z € X, F is a closed subset of X and C € M?*(X).

The conjugation map kX : M X — M X is defined by the formula kX (¢)(A) = 1—¢(X\A)
force MX and A € exp X. The map kX is an antiisomorphism of the lattice M X and the
natural transformation x: M — M is a monad isomorphism [2].

Let us describe a monad embedding 6: M — V from [4]. Let h: (0;1) — R be an
increasing homeomorphism such that h(1 —t) = —h(t). Then 6X could be defined as follows

T, 00X(c) =max{t € R | c(p ' ([t; +00))) > h~'(t)}

for a compactum X, c € MX and ¢ € C(X).

We will show that the restriction of the map ZX to the space M X (more precisely to
the image of M X under the embedding 0X) coincides with the conjugation map xrX. We
obtain the same coincidence for GX and the transversality map.

Theorem 1. We have ZX 00X = 60X o kX for each compactum X.

Proof. Consider any ¢ € M X and ¢ € C(X). We have

m,0IX 00X (c)=—m_ (pOQX( )= —max{t € R | c((—p) ([t; +0))) > R (t)} =
=min{s € R | c(p™ ((—00;8])) > A7} (—s)} =min{s € R | c(p~ ((—00;8])) > 1 = h7'(s)} =
—maX{tER|C( H(=o0st))) <1 -h7' (1)} =
=max{t € R |1 —c(p” 1((— co;t))) = ()}=
=max{t € R| kX (c)(o *([t; +00))) > (¢ )} » 00X 0rkX(c) =

Theorem 2. We have ZX olX =1X o L X for each compactum X.
Proof. Consider any A € GX and ¢ € C(X). We have

T, 0ZX olX(A) = —m_,0lX(A) = —sup{inf(—¢(A4)) | A€ A} =
~ inf{sup(p(A)) | A € A} =
= sup{inf(p(B)) | BN A # @ for each A € A} =m,0lX o LX(A). =

The following proposition shows that the restriction of ZX on OX is an involution map
for OX. Moreover, since OX is a sublattice of VX, the map ZX | OX is an antiisomorphism
of the lattice OX. The proof of the proposition could be done by usual checking and we
omit it.

Proposition 4. We have ZX (0OX) C OX for each compactum X.
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