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We introduce an involution map for the functional monad which generalizes the transversa-
lity map for the inclusion hyperspace monad and the conjugation map for the capacity monad.

Т. Радул, В. Шомоди. Отображение инволюции для монады функционалов // Мат. Студiї.
– 2012. – Т.37, №1. – C.29–33.

Определено отображение инволюции для монады функционалов, которое обобщает
отображение трансверсали для монады гиперпространств включения и отображение конъ-
югации для монады емкостей.

1. We call a map i : X → X an involution iff i ◦ i = idX . Involution maps play an
important role in investigations of some monads in the category Comp. The transversali-
ty map ⊥X : GX → GX for the space of hyperspaces of inclusion GX is an involution (see
p. 30 of [1]). Moreover, the map ⊥X is an antiisomorphism of the lattice GX with lattice
operations intersection and union. The maps ⊥X are components of a natural transformation
⊥ : G→ G which is an isomorphism of the monad G based on the functor G.

The conjugation map κX : MX →MX for the space of capacities has similar properties
(see [2]).

The monads G and M (based on the capacity functor M) could be represented as
submonads of the functional monad V (see [3] and [4]). The aim of this paper is to defi-
ne an involution map for the functional monad, respective restrictions of which coincide
with the transversality map and the conjugation map.

The paper is arranged in the following manner. In Section 2 we give necessary definitions
and facts, in Section 3 we define an involution map and investigate its properties and in
Section 4 we consider how this map acts on some submonads of the monad V.

2. By Comp we denote the category of compact Hausdorff spaces (compacta) and continuous
maps. For each compactum X we denote by C(X) the Banach space of all continuous
functions ϕ : X → R with the usual sup-norm: ‖ϕ‖ = sup{|ϕ(x)| | x ∈ X}. We also consider
on C(X) the natural partial order.

In what follows, all spaces and maps are assumed to be in Comp except for R, the spaces
C(X) and functionals defined on C(X) with X compact Hausdorff.

We recall some categorical definitions. We define them only for the category Comp. The
central notion is the notion of monad (or triple) in the sense of S. Eilenberg and J. Moore.
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A monad ([5]) T = (T, η, µ) in the category Comp consists of an endofunctor T : Comp→
Comp and natural transformations η : IdComp → T (unity), µ : T 2 → T (multiplication)
satisfying the relations µ ◦ Tη = µ ◦ ηT =1T and µ ◦ µT = µ ◦ Tµ. (By IdComp we denote the
identity functor on the category Comp and T 2 is the superposition T ◦ T .)

A natural transformation ψ : T → T ′ is called a morphism from a monad T = (T, η, µ) to
a monad T′ = (T ′, η′, µ′) if ψ ◦ η = η′ and ψ ◦µ = µ′ ◦ ηT ′ ◦Tψ. If all of the components of ψ
are monomorphisms then the monad T is called a submonad of T′ and ψ is called a monad
embedding. If ψ has the inverse monad morphism, then ψ is called a monad isomorphism.

By V X we denote the product
∏

ϕ∈CX [minϕ,maxϕ], which is in fact the space of all
functionals ν : C(X) → R (not necessarily linear) with the property ν(ϕ) ∈ [minϕ,maxϕ]
for each ϕ ∈ C(X). For a map ϕ ∈ C(X) we denote by πϕ or π(ϕ) the corresponding
projection πϕ : V X → R. Now, for each map f : X → Y we define a map V f : V X → V Y
by the formula πϕ ◦ V f = πϕ◦f for ϕ ∈ C(Y ). For a compactum X we define components
hX : X → V X and mX : V 2X → V X by πϕ ◦ hX = ϕ and πϕ ◦ mX = π(πϕ) for all
ϕ ∈ C(X)). The triple V = (V, h,m) is a monad in the category Comp ([6]).

A functional ν : CX → R is called weakly additive if for each c ∈ R and ϕ ∈ CX we have
ν(ϕ + cX) = ν(ϕ) + c; normed if ν(1X) = 1; order-preserving if for each ϕ, ψ ∈ CX with
ϕ ≤ ψ we have ν(ϕ) ≤ ν(ψ). For a compactum X by OX we will denote the set of all order-
preserving weakly additive normed functionals. The construction O defines an important
submonad O of V (see [7] for more details).

3. Let us define a map IX : V X → V X by the formula πϕ ◦ IX = −π−ϕ. It is easy to see
that IX is a well defined and a continuous involution.

Proposition 1. The maps IX are components of a monad isomorphism I : V→ V.

Proof. Let f : X → Y be a map and ϕ ∈ C(X). Then we have

πϕ ◦ IX ◦ V f = −π−ϕ ◦ V f = −π−ϕ◦f = πϕ◦f ◦ IX = πϕ ◦ V f ◦ IX.

Hence the maps IX are components of a natural transformation I : V → V.
Let us show that I is a monad morphism. Consider any compactum X and ϕ ∈ C(X).

Then we have

πϕ ◦ IX ◦ hX = −π−ϕ ◦ hX = −(−ϕ) = ϕ = πϕ ◦ hX,
πϕ ◦ IX ◦mX = −π−ϕ ◦mX = −π(π−ϕ) = −π(−πϕ ◦ IX) = −π(−πϕ) ◦ V IX =

= π(πϕ) ◦ IV X ◦ V IX = πϕ ◦mX ◦ IV X ◦ V IX.

We obtain I ◦ h = h and I ◦m = m ◦ IV ◦ V I, hence I is a monad morphism. Since IX is
an involution, I is a monad isomorphism.

There exist natural lattice operations ∨ and ∧ on V X defined by the formulas

πϕ(ν ∨ µ) = max{πϕ(ν), πϕ(µ)}, πϕ(ν ∧ µ) = min{πϕ(ν), πϕ(µ)}

for ν, µ ∈ V X and ϕ ∈ C(X). The following proposition shows that IX is an antiisomorphi-
sm of the lattice V X.

Proposition 2. IX(ν ∧ µ) = IX(ν) ∨ IX(µ) and IX(ν ∨ µ) = IX(ν) ∧ IX(µ).
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Proof. Consider any ϕ ∈ C(X). We have

πϕ(IX(ν ∧ µ)) = −π−ϕ(ν ∧ µ) = −min{π−ϕ(ν), π−ϕ(µ)} =
= max{−π−ϕ(ν),−π−ϕ(µ)} = max{πϕ ◦ IX(ν), πϕ ◦ IX(µ)} = πϕ(IX(ν) ∨ IX(µ)).

The proof of the second equality is similar.

Let us denote
V PX = {ν ∈ V X | π−ϕ(ν) = −πϕ(ν)}.

The next proposition follows immediately from the definition of IX.

Proposition 3. We have IX(ν) = ν iff ν ∈ V PX.

4. Let us consider how a involution acts on some submonads of V. We need definitions of
the monads G and M.

For a compactumX by expX we denote the hyperspace ofX (the set of non-void compact
subsets of X provided with the Vietoris topology). An element A ∈ exp2X is called an
inclusion hyperspace if for each A ∈ A and B ∈ expX with A ⊂ B we have B ∈ A. Let us
denote by GX = {A ∈ exp2X | A is inclusion hyperspace} ⊂ exp2X. For a map f : X → Y
we define a map Gf : GX → GY by the formula Gf(A) = {A ∈ expY | f(B) ⊂ A for some
B ∈ A}, A ∈ GX. Then we define natural transformations η : IComp → G and µ : G2 → G
as follows: ηX(x) = {A ∈ expX | x ∈ A}, x ∈ X and µX(Ã) =

⋃
{
⋂
α | α ∈ Ã}, where

Ã ∈ G2X. It is shown in [8] that the triple G = (G, η, µ) is a monad on the category Comp.
The transversality map ⊥X : GX → GX is defined by the formula ⊥X(A) = {B ∈

expX | B ∩A 6= ∅ for each A ∈ A}. The map ⊥X is an antiisomorphism of the lattice GX
and the natural transformation ⊥ : G→ G is a monad isomorphism ([1]).

A monad embedding l : G→ V could be defined as follows πϕ ◦ lX(A) = sup{inf ϕ(A) |
A ∈ A}, A ∈ GX and ϕ ∈ CX ([3]).

Finally, consider the definition of a capacity monad. We follow the terminology of [2].
Let X be a compactum. A function c that sends each closed subset A of X to a real number
c(A) ∈ [0, 1] is called an upper-semicontinuous capacity on X if the following three properties
hold for each closed subsets F and G of X:

1. c(X) = 1, c(∅) = 0,

2. if F ⊂ G, then c(F ) ≤ c(G),

3. if c(F ) < a, then there exists an open set O ⊂ F such that c(B) < a for each compactum
B ⊂ O.

We extend a capacity c to all open subsets U ⊂ X by the formula c(U) = sup{c(K) | K
is a closed subset of X such that K ⊂ U}.

The spaceMX of all upper-semicontinuous capacities on a compactumX is a compactum
as well, if a topology on MX is defined by a subbase that consists of all sets of the form
O−(F, a) = {c ∈ MX | c(F ) < a}, where F is a closed subset of X, a ∈ [0, 1], and
O+(U, a) = {c ∈ MX | c(U) > a}, where U is an open subset of X, a ∈ [0, 1]. Since all
capacities we consider here are upper-semicontinuous, from now on we call elements of MX
simply capacities.

Let us define the map Mf : MX → MY for a continuous map of compacta f : X → Y
by the formula Mf(c)(F ) = c(f−1(F )) where c ∈ MX and F is a closed subset of X. We
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obtain the functor M which is a functorial part of the monad M = (M, η, µ) ([2]), where the
components of the natural transformations are defined as follows: ηX(x)(F ) = 1 if x ∈ F
and ηX(x)(F ) = 0 if x /∈ F ;

µX(C)(F ) = sup{t ∈ [0, 1] | C({c ∈MX | c(F ) ≥ t}) ≥ t},

where x ∈ X, F is a closed subset of X and C ∈M2(X).
The conjugation map κX : MX →MX is defined by the formula κX(c)(A) = 1−c(X\A)

for c ∈MX and A ∈ expX. The map κX is an antiisomorphism of the lattice MX and the
natural transformation κ : M→M is a monad isomorphism [2].

Let us describe a monad embedding θ : M → V from [4]. Let h : (0; 1) → R be an
increasing homeomorphism such that h(1− t) = −h(t). Then θX could be defined as follows

πϕ ◦ θX(c) = max{t ∈ R | c(ϕ−1([t; +∞))) ≥ h−1(t)}

for a compactum X, c ∈MX and ϕ ∈ C(X).
We will show that the restriction of the map IX to the space MX (more precisely to

the image of MX under the embedding θX) coincides with the conjugation map κX. We
obtain the same coincidence for GX and the transversality map.

Theorem 1. We have IX ◦ θX = θX ◦ κX for each compactum X.

Proof. Consider any c ∈MX and ϕ ∈ C(X). We have

πϕ ◦ IX ◦ θX(c) = −π−ϕ ◦ θX(c) = −max{t ∈ R | c((−ϕ)−1([t; +∞))) ≥ h−1(t)} =
= min{s ∈ R | c(ϕ−1((−∞; s])) ≥ h−1(−s)}=min{s ∈ R | c(ϕ−1((−∞; s])) ≥ 1− h−1(s)}=

= max{t ∈ R | c(ϕ−1((−∞; t))) ≤ 1− h−1(t)} =
= max{t ∈ R | 1− c(ϕ−1((−∞; t))) ≥ h−1(t)} =

= max{t ∈ R | κX(c)(ϕ−1([t; +∞))) ≥ h−1(t)} = πϕ ◦ θX ◦ κX(c).

Theorem 2. We have IX ◦ lX = lX ◦ ⊥X for each compactum X.

Proof. Consider any A ∈ GX and ϕ ∈ C(X). We have

πϕ ◦ IX ◦ lX(A) = −π−ϕ ◦ lX(A) = − sup{inf(−ϕ(A)) | A ∈ A} =
= inf{sup(ϕ(A)) | A ∈ A} =

= sup{inf(ϕ(B)) | B ∩ A 6= ∅ for each A ∈ A} = πϕ ◦ lX ◦ ⊥X(A).

The following proposition shows that the restriction of IX on OX is an involution map
for OX. Moreover, since OX is a sublattice of V X, the map IX | OX is an antiisomorphism
of the lattice OX. The proof of the proposition could be done by usual checking and we
omit it.

Proposition 4. We have IX(OX) ⊂ OX for each compactum X.
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